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Introduction

Current industry benchmarks measuring edge AI inference performance tend 
to overemphasize isolated TOPS metrics that don’t effectively quantify results 
for real-world, power-conscious deployments. To benchmark AI inference more 
accurately for specific edge use cases, we recommend holistically focusing on 
performance and efficiency. 

In this paper, we highlight the importance of balancing these important criteria 
while mapping tangible benefits to three primary verticals: automotive, smart 
homes, and Industry 4.0. We also reference key BrainChip AI inference performance 
and efficiency benchmark results – and explain how these numbers were achieved 
with neuromorphic techniques that significantly reduce latency and power while 
increasing throughput.

In addition, we discuss potentially formulating a new set of benchmarks that 
focus on latency, power, and (on-chip) in-memory computation. When fully 
defined, these benchmarks will allow system designers to further optimize low-
power AI inference for complex, multi-modal edge environments. 

https://arxiv.org/abs/2111.15366
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Chapter 1:
The limits of conventional AI 
performance benchmarks

As artificial intelligence (AI) hardware and machine learning (ML) algorithms 
evolved, the semiconductor industry developed a new generation of 
standardized benchmarks such as MLPerf™ to measure the performance of AI-
specific workloads and inference capabilities. These include IBM DVS128 Gesture 
Dataset, ImageNet, and GLUE. Although some benchmarking organizations 
continue to introduce new fields and subcategories to measure AI inference at 
the edge, these additions are frequently limited by an overemphasis on isolated 
TOPS and do not effectively quantify results for real-world use cases where 
power consumption is a primary concern. 

As a recent NeurIPS paper notes, a small collection of influential benchmarks is 
currently “valorized” across different AI subfields. However, these benchmarks 
do not accurately capture edge AI inference subsets or effectively gauge the 
efficiency of certain neuromorphic techniques. 
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From our perspective, edge AI benchmarks need to move beyond their desktop 
and data center origins by adopting new criteria that address the unique, 
power-conscious requirements of cloud-free, local AI inference. As well, edge 
AI inference benchmarks should be application-based, with dedicated fields 
emulating multiple sensor inputs to reflect closed-loop, real-world use cases. This 
comprehensive approach to benchmarking offers a more top-down, system-level 
view of performance and efficiency.

https://arxiv.org/abs/2111.15366
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8884247/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8884247/


4  Benchmarking AI Inference at the Edge

To accurately measure AI inference capabilities for multi-sensor, edge-specific 
use cases in a power and thermally constrained environment, benchmarks should 
holistically assess performance and efficiency. These benchmarks – which should 
include open-loop and closed-loop datasets – will enable system designers 
to effectively measure raw performance metrics such as throughput and 
power consumption while gauging efficacy for real-world tasks. With this data, 
companies can more precisely calibrate AI inference performance and efficiency 
for edge-specific verticals such as automotive, smart homes, and Industry 4.0.    

Automotive 
Consumers expect new vehicles to feature advanced assisted driver assistance 
systems (ADAS) enabled by LiDAR, radar, and computer vision; as well as highly 
personalized and responsive in-cabin systems that respond to voice commands, 
gestures, and facial expressions. 

Chapter 2: 
Balancing performance and power 
at the edge
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Automotive manufacturers must therefore design edge AI systems that support 
massive amounts of data throughput from multiple sensors, ensure inference 
accuracy while minimizing latency, and keep power consumption within a 
reasonable envelope. The increasing popularity of electric vehicles with finite 
battery limitations only reinforces the importance of energy-efficient computation. 
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For automotive use cases, balanced inference benchmarks can offer an 
especially accurate – and comprehensive – assessment of AI performance in 
complex, dynamic environments by holistically measuring efficiency and power 
draw for applications such as keyword spotting and image detection. These 
benchmarks will help automotive manufacturers implement more responsive 
in-cabin systems, as well as computer vision and LiDAR systems that detect 
vehicles, pedestrians, bicyclists, street signs, and objects with incredibly high 
levels of precision.

Smart Homes
Smart home devices such as personal assistants, video doorbells, and 
thermostats typically require a minimal physical footprint. These devices also 
need to quickly respond to voice commands, detect anomalous behavior, and 
determine next steps by analyzing and interpreting data from multiple sensors. 

AI Inference @ Sensor
Multi-modal Integration

Inference Metadata

Home Server

Inference Metadata

Inference Metadata

Designing smarter edge consumer devices for multi-modal applications

To enable a new generation of smarter, more proactive consumer devices, 
manufacturers must design AI subsystems that bolster cloud-free inference 
capabilities while minimizing processor die size. Enabling AI inference workloads 
to run efficiently at the edge will help smart home manufacturers reduce overall 
system footprint, price, and power consumption. 

For smart home devices, inference benchmarks should focus on measuring 
performance, accuracy, and efficiency for tasks such as keyword spotting, 
object detection, and visual wake words. 

https://brainchip.com/designing-smarter-and-safer-cars-with-essential-ai-2/
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Balancing efficiency and power at the edge for Industry 4.0

AI Inference @ Sensor Multi-modal Integration
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Industry 4.0
Factories, warehouses, and loading docks increasingly rely on advanced AI-
powered robots to complete challenging physical tasks with minimal human 
intervention. Equipped with real-time learning capabilities, these robots often 
leverage sophisticated sensors to see, hear, smell, touch, and even taste. 

Targeted Industry 4.0 inference benchmarks focused on balancing efficiency and 
power will enable system designers to architect a new generation of energy-
efficient robots that optimally process data-heavy input from multiple sensors. 
These robots will intelligently respond to dynamic variables, conditions, and 
instructions by immediately detecting and recognizing new objects.
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As highlighted in previous chapters, current AI inference performance benchmarks 
do not accurately gauge efficacy for real-world edge deployments. However, 
these benchmarks do effectively demonstrate relative performance. With that, let 
us look at BrainChip’s Akida performance relative to MLPerf published benchmark 
data. The Akida event-based AI processor is primarily available as IP to be 
integrated into SoC designs, but the following benchmarks have been run on the 
AKD1000 silicon platform, which is commercially available for development today.

The benchmark data below is divided into two sets of graphs, each comparing 
BrainChip’s Akida processor using three representative applications. These 
applications – keyword spotting, object detection, and anomaly detection – play 
critical roles in enabling the edge-specific verticals highlighted in the previous 
chapter. The first set of graphs are based on publicly available MLPerf datasets 
from MLCommons that benchmark Akida and leading MCU vendor offerings.*

As the first chart illustrates, Akida-based performance delivers extremely low 
latency using just a fraction of the energy consumed by conventional MCUs. 

Chapter 3: 
Comparing performance and 
energy efficiency with tinyML
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* All data for the MCUs (ST, Renesas, Silicon Labs), DLA (NVIDIA), and TPU (Google) have been taken from published 
data at the MLCommons tinyML site (https://mlcommons.org/en/inference-tiny-07/). Note: AKD1000 scores are 
unverified results, have not been through an MLPerf review, and may use measurement methodologies and/or 
workload implementations that are inconsistent with the MLPerf specification for verified results. 

https://mlcommons.org/en/inference-tiny-07/
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The contrast is even more pronounced when benchmarking Akida against 
conventional MCUs for visual wake words – a popular edge application that 
demands complementary levels of efficiency and performance in power-
conscious and thermally constrained environments.

Similarly, the anomaly detection benchmark shows a substantial gain in latency 
and energy versus the MCU solutions.
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The second set of graphs are also based on publicly available MLPerf datasets 
from MLCommons that benchmark Akida and leading DLA and TPU vendor 
offerings. These compare Akida with two higher end edge AI processors: 
NVIDIA Jetson Nano (a deep learning accelerator) and Google Coral (a tensor 
processing unit). Even at a significantly lower frequency, Akida matches or 
outperforms both processors while consuming significantly less power. 

This performance and efficiency data is based on a two-node configuration – 
which we compare here to ensure consistency with earlier MCU comparisons. It 
should be noted that higher node configurations further reduce latency – and 
are potentially more efficient as they enable faster compute. However, even with 
a two-node configuration, Akida’s latency fits well within the 5ms target, and the 
energy consumed per frame by Akida is only a fraction of the power drawn by 
larger processors. 
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Similarly, Akida offers notable efficiency benefits for keyword spotting 
applications, with latency measuring within the 1.5 ms target.
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To put these benefits into context, we have consolidated results from the previous 
section of TinyML benchmarks (a two-node Akida configuration versus published 
MCUs) into a single, energy efficiency view. To do this, we use the measured data 
on latency and energy per inference on each device to calculate the following:

Performancedevice = 
1

Latencydevice

Efficiencydevice = 
Performancedevice

Energy per inferencedevice

Although this equation is based on the latency and energy for tinyML benchmarks, 
there are additional factors such as model size and load times that could provide 
a more precise efficiency metric. To compare these results against other published 
datapoints, we use a relative performance efficiency metric which is normalized 
against the lowest efficiency device.

Relative performance efficiency =  
Efficiencydevice

Efficiencylowest efficiency device

This view highlights the work done per unit energy by each device.

Chapter 4: 
Maximizing edge AI inference 
performance and efficiency with Akida

Relative performance efficiency on anomaly detection benchmark 
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The relative efficiency of the anomaly detection benchmark highlights the benefits 
of an efficient AI engine over traditional MCUs even for small workloads.
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Relative performance efficiency on visual wake word benchmark
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With a slightly larger workload, this efficiency gap significantly increases.

Additionally, as we discuss in the next chapter, future devices will not only be running 
larger AI workloads but likely run multiple networks simultaneously. This is where the 
efficiency advantage truly unlocks more intelligence in low power devices.
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While frames per second (FPS) and energy consumption are some of the most 
measured metrics, model size is another crucial factor that affects overall 
efficiency. By leveraging lighter AI inference models, chips with limited on-die 
memory can run larger workloads. Moreover, decreasing the size of AI inference 
models helps reduce data movement, allowing systems to efficiently perform 
parallel computations. Although lowering system bandwidth requirements 
definitively improves system efficiency and yields increased FPS, future studies 
analyzing further impacts will likely provide more granular benchmarks.

The graph below illustrates how quantization of weights and activation results in 
lighter models and significantly improves efficiency.
 

Chapter 5: 
Optimizing load times with lighter 
AI inference models
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Lastly, it should be noted that reducing model size and implementing advanced 
optimization techniques significantly improve load time. This is particularly 
important for neural processors running multiple networks.
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Indeed, load time differences are often quite pronounced – ranging from 
milliseconds to microseconds. Put simply, load times play a major role in 
supporting efficient multi-sensor, multi-network real-world AI inference 
deployments.
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To enable real-world, power-conscious deployments, benchmarks measuring 
AI inference capabilities should focus on holistically gauging performance and 
efficiency for multi-sensor, edge-specific use cases. In this paper, we have 
proposed a few suggestions to measure efficiency gains more comprehensively 
and highlighted additional criteria for consideration. However, there is more to 
be done. Ultimately, we foresee a new set of inference performance benchmarks 
that will measure efficiency with precision by focusing on three primary criteria: 
latency, power, and (on-chip) in-memory computation. This triumvirate forms the 
foundation of AI processing at the edge. 

Specific strategies for formulating and implementing the next generation of 
benchmarks will undoubtedly vary. That is why it is important to collaboratively 
explore, establish, and promote new methods of measuring inference performance 
and efficiency for conventional and neuromorphic silicon. 

Conclusion

* All data for the MCUs (ST, Renesas, Silicon Labs), DLA (NVIDIA), and TPU (Google) have been taken from published 
data at the MLCommons tinyML site (https://mlcommons.org/en/inference-tiny-07/). Note: AKD1000 scores are 
unverified results, have not been through an MLPerf review, and may use measurement methodologies and/or 
workload implementations that are inconsistent with the MLPerf specification for verified results. 

https://mlcommons.org/en/inference-tiny-07/

