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Introduction

A brief history of neural networks in 
Artificial Intelligence

Artificial neural networks (ANNs) were first developed 

to imitate the response of neurons, the cells in the 

brain. Neurons communicate with one another 

through electrical impulse signals called spikes, and 

it was believed that the information transmitted by 

neurons is encoded in the rate at which neurons 

emitted these spikes. We now know that the timing 

of these spikes, their temporal grouping, is more 

important. The first nonlinearities in ANNs, such as 

sigmoid functions, were inspired by the way neurons’ 

firing saturate upon reaching their maximum firing 

rate; these became known as activation functions. 

ANNs were augmented with the biological observa-

tions that individual neurons in the visual cortex 

respond to stimuli within a spatially small area of the 

visual field (their receptive field). Neurons responding 

to the same visual features cover the entire visual 

field with their overlapping receptive fields. Together 

with the fact that object recognition is translation 

invariant, these observations gave rise to convolu-

tional neural networks (CNNs).  An object is recog-

nized regardless of its position in the visual field, or its 

location in an image.

 

Neural networks (NNs) form the basis of the technol-

ogy for artificial intelligence. While almost all AI

computation is being done in the cloud, AI computa-

tion is increasingly moving from the cloud to the

edge for experience, privacy, and commercial

reasons. As the complexity of NN models continues

to increase, and compute demands skyrocket, it is

becoming cost-prohibitive to deliver these more 

advanced intelligent services in real time from the 

cloud, or near-impossible to achieve this AI perfor-

mance on small-form factor, fan less or portable 

edge devices, which are fundamental to the growth 

of the $1T+ AIoT market.  It is, therefore, imperative to 

take a wholistic approach to solving this problem 

and explore radical new ways to reduce complexity, 

size, and compute requirements, without compro-

mising on the high accuracy and performance 

expectations to support the transition to edge AI. In 

this paper, we present a superior method to 

efficiently process sequential data such as video, 

speech, and sensory data that is often encountered 

in edge applications.
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Chapter 1
The rise of the CNN

Another way is to compute the present response 

based on a temporal convolution of a kernel over 

each of its many past inputs. As it turns out, these 

two methods are not exclusive. They can be made to 

be two sides of the same coin, and there are meth-

ods to transform from one representation to the 

other. This is significant because this means that the 

temporal convolution over an input may be trans-

formed into a recurrent process ingesting the 

sequential data one timestep at a time. 

 

Addressing the limitations of the CNN

Researchers in the field of machine learning have 

been experimenting with both temporal convolution 

and internal state approaches to efficiently incorpo-

rate temporal or sequence information. For applica-

tions that require only temporal information process-

ing, like NLP or other sequence prediction problems, 

researchers have turned to RNNs such as long 

short-term memory (LSTM) and gated recurrent 

memory (GRU) models (see Figure 1). More recently, 

these RNNs have been supplanted by Transformers. 

For applications that require both spatial and tem-

poral processing, researchers have experimented 

CNNs are trained to recognize important spatial 

correlations in data, known as features. They extract 

increasingly abstract features as the data is 

processed layer by layer. Trained with gradient 

descent and backpropagation, the engines of deep 

learning, CNNs have dominated image classification 

and related tasks over the past decade. They 

efficiently extract spatial correlations from a static 

input image to map it into the appropriate classifi-

cation with state-of-the-art accuracy.

However, many modern ML workflows increasingly 

utilize sequential data streams that contain spatio-

temporal correlations, such as natural language 

processing (NLP) and object detection in video 

streams. The CNN models used in static image 

classification lack the capabilities to effectively use 

the temporal information that is present in these 

types of data streams.

How then do we give artificial neurons the flexibility 

to encode and process temporal information 

efficiently? One way is to provide them with an 

internal state that has some temporal dynamics, 

such as the state used in recurrent neural network 

(RNN) models.  
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information, such as the ConvLSTM models 

mentioned above.

with performing 3D convolutions that combine 2D 

spatial convolution found in static image 

classification with a 1D temporal convolution, while 

other researchers have combined 2D spatial 

convolution with state-based RNNs such as LSTMs or 

GRUs to process the temporal information 

components with models such as ConvLSTM.

However, each of these approaches comes with  

significant drawbacks. Combining 2D spatial 

convolutions with 1D temporal convolutions is 

computationally expensive and is thus not 

appropriate for efficient low-power inference, 

although much effort has been expended to reduce 

this cost. 

A core issue with RNNs is the excessive application of 

nonlinear operations at each timestep, which 

exhibits two major drawbacks. First, nonlinearities 

force the network to be sequential in time, meaning 

it cannot efficiently leverage parallel processing 

during training. 

Second, since the applied nonlinearities are ad-hoc, 

without any theoretical guarantee of stability, it is 

not possible to train these networks or perform 

inference over long periods of sequential data. 

These limitations also apply to models that combine 

2D spatial convolution with RNNs to process spatial 

and temporal 

RNN

LSTM

GRU
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Figure 1. Diagrams detailing the important components of RNNs (top), 
LSTMs (center), and GRUs (bottom). 

(from https://doi.org/10.1080/03610918.2020.1854302)

The rise of the CNN



Figure 2. Long Range Arena (LRA) performance score (y axis) vs inference 
speed (x axis) and memory footprint (circle size) for different variations of 
Transformer models. The highest score is around 55. State-space models 
in Table 1 achieve quite a bit more at around 85 and above.

(from https://doi.org/10.48550/arXiv.2011.04006)

Chapter 2
The birth of the Transformer

Transformers were developed to find networks to 

replace RNNs that were a lot more efficient to train 

by utilizing the parallelization of training hardware in 

language modeling, machine translation, and 

question answering. In the authors’ words, "the 

Transformer requires less computation to train and is 

a much better fit for modern machine learning 

hardware, speeding up training by up to an order of 

magnitude." 
(https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html)

Transformers were initially described as being more 

capable of connecting input items farther away from 

each other than RNNs. However, recently a new class 

of RNNs has been able to solve long-range arena 

(LRA) problems beyond the capabilities of the best 

Transformers (see how the LRA performance score is 

lower than 55 for the Transformers in Figure 2). These 

RNN networks (with names like S4, S4-LegS, 

S4D-LegS, and S5) are based on state-space 

equations, which have been used in engineering for 

modeling system dynamics, based on simplifications 

of physical equations closely reflecting the world’s 

physics. Such networks exhibit an LRA performance 

score of 85 and higher and have succeeded in 

finding a solution on Pathfinder-X (Path-X) where the 

best Transformers have so far failed, as shown in 

Table 1.
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Table 1: Performance on the long range arena (LRA) benchmark tasks. X indicates that the network “performs no better than random guessing.” Bold and 
underlined scores indicate highest and second highest performance, respectively. Path-X is Pathfinder-X, Long-Range Spatial Dependencies with Extreme 
Length. The best Mega model has the Transformer’s complexity of the order of the square of the sequence length     (L2) instead of the order of the sequence 
length     (L) for S4 and S5 networks. 

(Table 1 from https://doi.org/10.48550/arXiv.2208.04933)
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The birth of the Transformer

Model
(Input length)

Transformer
Luna-256
H-Trans.-1D
CCNN

36.37
37.25
49.53
43.60

63.14
58.76

60.47
59.60
62.75

62.15

64.27
64.57
78.69

84.08

90.43
90.19

86.18
86.82
89.02

89.31

57.46
79.29
63.99

X

91.25
90.97

89.46
90.90
91.20

91.40

42.44
47.38

46.05
88.90

90.44
85.80

88.19
88.65
89.50

88.00

71.40
77.72

68.78
91.51

96.01
94.41

93.06
94.20

94.8

95.33

X
X
X
X

97.98
93.81

91.95
96.35
96.66

98.58

53.66
59.37
61.41

68.02

88.21
85.66

84.89
86.09
87.32

87.46

Mega(     (L2))
Mega-chunk (     (L))

S4D-LegS
S4-LegS
Liquid-S4

S5

ListOps
(2,048)

Text
(4,096)

Retrieval
(4,000)

Image
(1,024)

Pathfinder
(1,024)

Path-X
(16,384) Avg.



Chapter 3
TENN: It’s about Time

The parameters of the temporal kernels can be 

optimized during training so that the shapes of the 

temporal kernels are driven by the data and not 

limited to some a priori definition. 

Every temporal layer of a TENN consists of a tempo-

ral convolution between the temporal kernels and 

the inputs, which is a linear operation that works 

similarly to standard spatial convolutions in CNNs. 

Therefore, the temporal convolution mode of the 

network can be trained similarly to how a CNN is 

trained, efficiently utilizing modern parallel processing 

architectures and libraries. The training can be done 

using standard optimization algorithms such as 

ADAM. 

The temporal convolution mode also guarantees the 

stability of the network given well-behaved temporal 

kernels. In addition, TENNs offer parameter represen-

tation that is more efficient in training and storage 

requirements than the ubiquitous weight representa-

tion used in most ANN/CNN. 

BrainChip developed its version of temporal 

networks organically due to its foundation in digital 

event-based neural networks (ENNs). An explicit 

temporal convolution capability has been added in 

the Temporal Event-based Neural Networks, or 

TENNs, which efficiently combine spatial and tempo-

ral convolutions. 

Unlike standard CNN networks that only operate on 

the spatial dimensions, TENNs contain both temporal 

and spatial convolution layers. They may combine 

spatial and temporal features of the data at all 

levels from shallow to deep layers. In addition, TENNs 

efficiently learn both spatial and temporal correla-

tions from data in contrast with state-space models 

that mainly treat time series data with no spatial 

components. Given the hierarchical and causal 

nature of TENNs, relationships between elements 

that are both distant in space and time may be 

constructed for efficient continuous data processing 

(such as video, raw speech, and medical data). 

Causal means using previous processed values of 

the time series to estimate current or future values. 
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Contrary to the large neural networks running on a cloud 

server that handle temporally unrelated data, the edge is 

often focused on receiving a continuous stream of the 

same data (video surveillance, self-driving video, medical 

vital signs, speech audio). This allows neural networks to 

take full advantage of the redundancies in space and 

time, and to develop sparse data representations that 

permit them to run AI hardware with efficient memory and 

efficient power use at the edge. 

The parameter representation makes TENNs 

robust to changes in spatial and temporal 

scales and thus enables it to handle changes in 

input data resolution and temporal sampling 

rate.

TENNs temporal operations can be configured 

to operate either in temporal convolution mode 

(“convolution mode”) or as a recurrent temporal 

operation (“recurrent mode”). The temporal 

convolution layers can be naturally converted 

into equivalent recurrent layers for efficient 

online inference. This is especially useful for 

mobile devices and edge computing, where it is 

costly to keep a large memory buffer (time 

window) of past inputs to perform temporal 

convolutions at every timestep. The resulting 

network is more efficient with temporal opera-

tions configured as recurrent layers, performing 

efficient online inference over spatiotemporal 

data streams. Thus, TENNs benefit from efficient 

training on parallel hardware (such as GPU and 

TPU), and from the compactness of recurrence 

for inference at the edge. 

TENN: It’s about Time



Chapter 4
Results and Summary
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Table 2: Near State-of-the-Art Results for the 10-Class Raw Audio Speech Commands Classification. Accuracy percentages of TENN16 and TENN128 indicate that 
they achieve near SoTA results but with a fraction of the compute and number of parameters. The numbers 16 and 128 indicate the amount of subsampling 
performed in TENN, further reducing the number of parameters and compute. WaveGAN indicates comparing to a baseline CNN specifically designed for raw 
speech, the discriminator from the WaveGAN model. In contrast TENN is a general architecture, not specifically designed for raw speech. 

(From https://doi.org/10.48550/arXiv.2111.00396).

X means not possible to train or failed to do better than random guessing.
* These are estimates based on available code and publication information

TENNs have shown state-of-the-art (SoTA) accuracies with orders of magnitude fewer parameters and fewer 

multiply-accumulate (MACs) operations per inference than previous networks (see Tables 2 to 5). On the SC10 

subset of the Speech Commands dataset (Table 2)  (https://doi.org/10.48550/arXiv.1804.03209), TENNs achieve 

close to SoTA results at a fraction of the compute (MACs/sequence) and number of parameters.  For 

comparison, the performance of a CNN specifically designed for raw speech, the discriminator from the 

WaveGAN model is presented among other convolution (CKConv), and transformer networks (Transformer, 

Performer) (from https://doi.org/10.48550/arXiv.2111.00396). 

Near SoTA Results for SC10 (10-Class Raw Audio Speech Commands Classification)

S4 (SOTA)

TENN16

98.32 0.3 44.8

TENN128 97.12 0.052 0.019

Performer 30.77 ~12500 * ~6.3 *

WaveGAN-D 96.25 26.3

CKConv 71.66 0.1

Transformer ~25000 * ~3100 *

13.76 *

230 *

Number of 
Parameters (million)

SC10 raw classification 
accuracy

Billion 
MACs/sequence

X

98.15 0.085 0.091

Model



Table 3: Results for vital signs prediction on the BIDMC dataset expressed as the root mean square error (lower is better). TENN4 and TENN16 achieve near SoTA 
results, but with a fraction of the compute and number of parameters. Compared to UniCORNN, the results indicate that TENN4 has a 95% confidence interval 
that is 3x smaller in its prediction. The numbers 4 and 16 indicate the amount of subsampling performed in TENN, reducing the number of parameters and 
compute. 

(From https://doi.org/10.48550/arXiv.2111.00396;  https://doi.org/10.48550/arXiv.2110.13985).

On the vital signs prediction BIDMC dataset (Table 3) (https://tinyurl.com/2p8ps2rc), TENN is doing much better 

than the next best results (UnICORNN) and almost at SoTA (S4), but with far fewer parameters and compute 

(MACs/sequence). From our analysis so far, the TENN is substantially better on the event-based Prophesee 1 

Megapixel Automotive Detection Dataset at a fraction of the compute and number of parameters compared 

to the other networks (Table 4). Finally, the same TENN architecture may not only be used on event-based data 

but can be directly used on frame-based video data as well. For Video Object Detection on the KITTI Dataset, 

TENN can match spatial CNNs even for color frames with orders of magnitude fewer compute and number of 

parameters compared to other networks (Table 5).

* These are estimates based on available code and publication information

TENNs: A new approach to Temporal Processing 11

Results and Summary

Near SoTA Results for vital signs prediction (BIDMC dataset)

S4 (SOTA) 0.247 0.332 0.090

TENN4

TENN16 0.391 0.472 0.251

Transformer 2.61 12.2 3.02

UnICORNN 1.06 1.39 0.869

2.28 -LSTM 10.7

Heart RateRespiratory 
Rate SpO2

0.352 0.392 0.155

0.3

0.044

~6300

0.135

0.064

Number of 
Parameters 

(million)

0.084

11.2

0.014

~197

CKConv 1.214 2.05 1.051 0.1

0.540 *

14.4 *

~0.26

Billion 
MACs/seq

0.080

Model



Table 4: Object Detection on the event-based 
Prophesee 1 Megapixel Automotive Detection 
Dataset. TENN is the State of the Art at a 
fraction of the compute and number of 
parameters compared to the other networks. 
mAP is the mean Average Precision, a metric 
used to evaluate object detection models; it falls 
between 0 and 1, with 1 being the best. 

https://tinyurl.com/mryddn7n
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Table 5: Video Object Detection on the KITTI 
Dataset. TENN can match spatial CNNs even for 
color frames with orders of magnitude fewer 
compute and number of parameters compared to 
other networks. mAP is the mean Average 
Precision, a metric used to evaluate object 
detection models; it falls between 0 and 1, with 1 
being the best. KITTI: 

(from https://www.cvlibs.net/datasets/kitti/
SimCLR: https://www.lightly.ai/datasets 
(Kitti 2d Object Detection Factsheet from Lightly
RGBD Fusion: 
https://www.mdpi.com/1424-8220/19/4/866)

Results and Summary

Network

Events-RetinaNet 18 32.8 2338 *

Gray-RetinaNet 43 32.8 2482 *

> 2482 *

1348 *Events-ConvLSTM 43 24.1

TENN 56 0.167 44.6

Parameters 
(million)

mAP
%

Billion 
MACs/s

25 43.5E2Vid-RetinaNet

Network

TENN 57.6 0.165 13.1

RGBD Fusion (YOLOv2) 48.2 349

82

Parameters 
(million)

mAP
%

Billion 
MACs/s

57.5 26SimCLR (ResNet-50)

Frame-Based Camera Video Object Detection 
- KITTI 2D Object Detection

Event-Based Object Detection — Prophesee 1 
Megapixel Automotive Detection Dataset

Note: The number of inferences per second for all models in Table 4 was 100 inferences per second (IPS).

Note: The inferences per second for all the models in Table 5 was 20 IPS.

* These are estimates based on available code and publication information
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Conclusion

In conclusion, TENN clearly demonstrates a very

efficient and innovative way to achieve highly

accurate models to support sequential data use

cases, such as with video and time series data. By

making more efficient use of sequential data, and

eliminating the need for separate preprocessing,

TENNs provides simpler network and chip 

architectures for smaller, cheaper, lower power 

devices without compromising on the high accuracy 

and performance expectations to support the 

transition to edge AI. Because TENNs can be trained 

as convolutional models utilizing the same parallel 

training pipelines in use today, which substantially 

reduce the training time compared to the sequential 

training of traditional recurrent models, TENN 

facilitates a wider adoption and a faster speed to 

market than past traditional recurrent networks ever 

could. Designers can therefore, more seamlessly 

incorporate TENNs into their current training 

methodologies and workflows.

BrainChip's 2nd Generation Akida IP provides full 

support for TENN’s exciting innovation, to enable 

truly intelligent end point devices for advanced 

applications like video object detection, audio and 

healthcare applications with orders of magnitude 

better performance than was previously possible. 

We believe this will empower designers to develop 

radically efficient, intelligent edge solutions, which 

can, in addition, benefit from the set of Akida's

other unique abilities, such as on-chip learning at

the edge.




