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Abstract—Recent developments in neuromorphic 

engineering have sparked tremendous interest in 

implementing these bio-inspired approaches for artificial 

olfactory systems. The inherent properties of applying 

neuromorphic processing for machine olfaction, such as 

massively parallel computing with sparse spike-based 

representations at minimal power requirements, present a 

promising solution for a wide range of practical 

applications. This work presents a hardware-based low-

power neuromorphic solution that can be seamlessly 

integrated as a pattern recognition engine for an electronic 

nose system. Furthermore, results based on the 

implementation of the proposed approach for real-time 

classification of different bacteria in the blood are 

presented in this paper. 
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I. INTRODUCTION (Heading 1) 

Artificial olfactory systems, or electronic noses (e-

noses), has numerous applications, ranging from quality 

control in the food industry to minimally-invasive 

medical diagnosis. Biological olfactory systems detect 

volatile organic compounds (VOCs) using olfactory 

receptor neurons (ORNs) that relay a sparse spike-

encoded signal through higher-order neurons to the 

brain, where decoding and recognition of odors takes 

place [1]. E-noses mimic this biological sensory system 

using chemical sensors and a pattern recognition engine 

[2]. While these systems have shown promising results 

in laboratory and controlled environments, scaling their 

applicability to real-world scenarios is currently limited 

by factors such as lack of portability, power efficiency, 

mediocre performance, and substantial latency to reach a 

reliable classification [2]–[4].  

Machine learning has largely improved upon traditional 

e-nose systems, but this has been at the cost of using 

hand-crafted features and being driven by statistical 

approaches [3] or computationally-expensive deep-

learning methods [2]. Whilst implementing these 

methods can potentially deliver improved accuracy, 

there is a further trade-off of portability and power 

efficiency [5]. 

Recently, bioinspired neuromorphic event-based 

approaches have shown promise in artificial olfaction. 

Neuromorphic olfaction aims to adopt the biological 

olfactory system's low power, event-driven, and highly 

accurate nature. Recent studies in this domain have 

presented results using spiking neural networks with low 

power implementations. However, these studies have 

primarily focused on incorporating a high degree of bio-

realism, resulting in complex architectures that are 

impractical for real-world applications [6].  

What is currently lacking is a bio-inspired approach that 

incorporates the advantage of the biological system 

using power-efficient neuromorphic hardware. This 

paper proposes a neuromorphic approach for processing 

e-nose data that can be seamlessly deployed on a 

neuromorphic-system-on-chip (NSoC). The proposed 

system comprises a data-to-spike encoder to generate 

events from continuous multi-variate sensory data and a 

spiking neural network (SNN)-based classifier. The 

primary aim of this work is to leverage the inherent 

properties of an event-based neuromorphic approach to 

develop a powerful inference engine capable of 

delivering highly accurate classification with low-power 

consumption and minimal latency. 

II. METHODS AND MATERIALS 

A. Dataset 

The work described in this paper used the bacteria in 

blood dataset collected as a part of the Mednose project 

at Örebro University. The Mednose project aimed to use 

an artificial olfactory system to identify different 

bacteria species in blood by detecting volatile organic 

compounds (VOCs) released at the early stages of 

bacterial incubation.  

 

The data was collected using the NST 3220 Emission 

Analyzer, an electronic nose system developed by 

Applied Sensors (Linköping, Sweden) [2], [7]. This 

sampling system comprises 10 MOS and 12 MOSFET 

sensors combined in an array. Experiments were 

conducted to identify ten different bacteria species in 

blood samples. Altogether, 1200 data samples of the ten 



bacteria were collected, 120 for each species. A single 

data sample consisted of a 5-minute measurement, 

wherein a baseline response of the sensors for a 

reference gas was measured for the first 10 seconds, 

followed by 30 seconds of exposure to the target 

compounds to record the VOCs, and finally, a 260 

seconds recovery phase allowing the sensors to return to 

baseline. Data acquisition was performed at a sampling 

rate of 2Hz, resulting in 601 data points in each sample, 

referring to changes in resistance when exposed to the 

target compounds. A detailed description of the e-nose 

experiments and the sampling protocols can be found 

in [7].  

B. Pre-Processing and Event Encoding 

Pre-processing in the form of baseline cancellation 

followed by normalization using local min-max scaling 

was performed on each data sample. The classifier 

model proposed in this study was developed using Akida 

SNN, which optimally processes event-encoded data 

represented in the address event representation (AER) 

format, a de-facto standard protocol in neuromorphic 

systems to represent sparse event-based information. 

Hence, one of the critical aspects of this study was to 

determine the most effective strategy to encode the 

continuous multi-variate sensor responses into event-

based data. 

Two different techniques were investigated to encode 

sensor responses into event-based data: firstly, we 

implement address event representation for olfaction 

(AERO) [8], an extension of the AER format for 

olfactory systems that has, in recent literature, exhibited 

its capabilities at encoding key features within the sensor 

responses. AERO uniformly discretizes the sensor 

responses into amplitude bins, where, at each time-step 

for a sensor, an event (binary 1) is recorded in the 

corresponding bin, resulting in a binarized spiking 

representation of the data. This technique generates a 

three-dimensional tensor that contains information about 

the sensor index in the array, time-step and approximate 

magnitude of the event. Fig. 1 is a reconstruction of the 

data from AERO encoding. 

The second encoding technique was based on the Step 

Forward (SF) algorithm. SF is a bio-inspired threshold-

based approach with an adaptive baseline. SF generates 

spiking responses when there is a change in the 

information. It has been demonstrated that SF can 

encode fast-changing signals efficiently with minimum 

reconstruction error, and its implementation has been 

proven for machine olfaction applications using SNN-

based classifiers [9]. The algorithmic implementation of 

this technique is detailed in [10]. 

 

In this case, the resulting three-dimensional tensor 

contains information about the sensor, time-step and 

polarity of an event. The polarity of the event determines 

whether the sensor reading registered above or below the 

baseline by more than the threshold. A sample 

reconstruction of the sensor reading can be seen in Fig. 

2, which represents information being retained by SF 

encoding. 

It was hypothesized that the full 5-minute (601 data 

points) sample may not be required to achieve a reliable 

classification and that once all the transient features had 

been captured, the remainder of the recovery period 

would be redundant. The number of data points used in 

the samples was varied to test this hypothesis. 

III. SNN-BASED CLASSIFIER 

The events generated from the encoder were propagated 

through a two-layer SNN for training and classification. 

The SNN-based classifier comprised an input and a 

processing layer. These layers were composed of 

integrate-and-fire neurons, and the SNN was trained 

using a modified, low-bit-width and naturally 

homeostatic spike-time dependent plasticity (STDP) 

learning algorithm. Through this STDP implementation, 

the network learns to identify repeating patterns in the 

sensor responses. 

Fig. 1. Normalized sensor response and reconstructed sensor response 

after AERO encoding for an E. Coli bacteria sample. 

Fig. 2. A. Reconstruction of the response curve using the Step-Forward 

algorithm. B. On and off spikes generated by the SF algorithm. 



When in inference mode, neurons that have learned these 

unique patterns will respond to the input data through 

changes in their potentials. A winner-take-all 

(WTA) [11] logic is applied, and the class of the winning 

neuron is identified to be provided as an output label to 

the user to classify the input sample. The effects of 

training the network on weight changes can be seen 

in Fig. 4, where this system enables the SNN to learn to 

represent the features of data samples. 

The network was configured using a grid-search 

parameter optimization to optimize the following hyper-

parameters: the number of neurons per class in the fully 

connected layer; the number of non-zero weights to be 

used per neuron (i.e., the number of connections for each 

neuron); and the learning competition between neurons. 

As a result, the SF encoded model had 2385 neurons per 

class, 1884 weights were used per neuron, and a learning 

competition of 0.478 was set. The AERO encoded model 

used 120 neurons per class, 8400 weights, and a learning 

competition of 0.25. The other parameters — initial 

plasticity, minimum plasticity, and plasticity decay — 

had minimal impact on classification performance.  
Before deploying the model on the Akida NSoC, the 

model was first validated in the python-based MetaTF 
development environment, which emulates the hardware 
capabilities of Akida. An overview of the proposed 
system is shown in Fig. 3 . The entire function of pre-
processing and classification can be mapped on the 
NSoC. 

IV. CLASSIFICATION PERFORMANCE ANALYSIS 

One of the main objectives of this study was to 
determine if a reliable classification could be achieved 
without the requirement of an entire sampling frame as an 
input to the SNN model. In order to achieve this, an 
increasing window approach was used, with an 
evaluation frame size of 25 data points to classify the 
continuous e-nose sensor responses. The data-to-event 
encoder transformed the e-nose data within the evaluation 
frame into an event-based format before propagating it 
through the SNN model for classification. The 
performance of the SNN-based classifier was evaluated 
using a randomized stratified 3-fold cross-validation. The 
classification accuracy trend observed over an increasing 
number of data points is shown in Fig. 5. 

Both encoding techniques resulted in high 
classification accuracy, as shown in Table 1. These 
results indicate that transient features critical to 
distinguishing between classes were present within the 
first 200 data points. Furthermore, it can be inferred that 
the sampling time for a reliable classification could be 
significantly reduced, and the extended recovery response 
did not directly contribute to the result. 

TABLE 1 

Classification Performance 

Encoding 

algorithm 

Data points per 

sample 

Mean classification 

accuracy using 3-

fold cross 

validation (%) 

AERO 
200 97.33 

600 95.08 

Step Forward 
200 97.42 

600 96.17 

 

While the classification performance for both data-to-
event encoding techniques was broadly similar, it is 
important to note that using SF-based event encoding 
significantly reduced the input dimensions of the data, 
resulting in an efficient encoding of the input space. 
However, in this case, the trade-off was the pre-
processing requirements, which might further affect the 
overall processing latency and result in a model with 
higher parameters. 

The SNN-based classifiers were deployed on the 

Akida NSoC to validate their performance on the 

neuromorphic hardware. The testing environment 

consisted of a PC with an Intel i7 10700 CPU and an 

Akida NSoC (AKD1000). This system is limited by CPU 

performance and the PCIe bus; however, enhanced 

Fig. 3. Neuromorphic data processing hardware pipeline for olfactory sensor data with an SNN-based classifier. 

Fig. 5. Classification accuracy vs number of data points used for the SNN 

model. 

Fig. 4. Neuron receptive fields in the SNN model for sensor 5’s response 

when exposed to an E. Coli in blood sample — A. Before training, and B. 

After training. 



performance may be observed when Akida IP is 

implemented directly near-sensor for processing. As 

anticipated, the hardware-implemented SNN classifiers' 

performance parameters were similar to those achieved 

using the MetaTF chip emulator platform. The recorded 

power estimation measurements corresponded solely to 

power consumed by the Akida neural fabric in 

performance mode (at 300 MHz clock speed). In this 

case, the dynamic power consumption of the AERO 

classifier model was observed to be 24.5 mW ± 0.5 mW 

with a throughput of 181 inferences per second. The 

dynamic efficiency of the classifier model, which is 

measured as energy consumed per inference, was 

observed to be 135 µJ/inference. The classifier model 

implementing SF encoding consumed an average of 25 

mW ± 3 mW with a throughput of 31.5 inferences per 

second, thus resulting in a dynamic efficiency of 822 

µJ/inference. The drop in performance in terms of 

throughput and dynamic efficiency for the SF encoder-

based classifier results from higher neural resources 

utilized by the model. These results further reinforce that 

the hardware-based SNN classifier can be effectively 

used as a low-power real-time pattern recognition engine 

for e-nose devices. 

V. CONCLUSION 

Developing a real-time and power-efficient hardware-

based implementation of a pattern-recognition engine 

has been of paramount importance for e-nose systems. 

This paper presents an application of an event-based 

neuromorphic approach for the encoding and 

classification of e-nose data. The proposed solution 

consists of a data-to-event encoder that implements 

AERO and SF-based event encoding of continuous 

multi-variate sensor array responses and a two-layer 

SNN-based classifier that implements bio-inspired 

learning to identify and classify repeating patterns in the 

event-encoded sensor responses. When applied to the 

MedNose dataset, the SNN-based classifier identified ten 

different bacteria types with a classification accuracy of 

97.42%. The system outperforms the accuracy of 

previous implementations, which require a 20-sample 

window and achieve 96.2% classification accuracy [2], 

whilst only requiring a single sample for classification. 

The SNN model was validated on the Akida NSoC and 

recorded a dynamic power consumption of 24.5 mW and 

a throughput of 181 inferences per second. Such a 

system could significantly speed up disease diagnosis in 

the real world whilst achieving state-of-the-art 

classification performance. 
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