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TENNs-PLEIADES:
Building Temporal Kernels

with Orthogonal Polynomials
Yan Ru Pei, Olivier Coenen,

Abstract— We introduce a neural network named PLEIADES (PoLynomial Expansion In Adaptive Distributed Event-based Systems),
belonging to the TENNs (Temporal Neural Networks) architecture. We focus on interfacing these networks with event-based data to
perform online spatiotemporal classification and detection with low latency. By virtue of using structured temporal kernels and
event-based data, we have the freedom to vary the sample rate of the data along with the discretization step-size of the network without
additional finetuning. We experimented with three event-based benchmarks and obtained state-of-the-art results on all three by large
margins with significantly smaller memory and compute costs. We achieved: 1) 99.59% accuracy with 192K parameters on the DVS128
hand gesture recognition dataset and 100% with a small additional output filter; 2) 99.58% test accuracy with 277K parameters on the AIS
2024 eye tracking challenge; and 3) 0.556 mAP with 576k parameters on the PROPHESEE 1 Megapixel Automotive Detection Dataset.

Index Terms—orthogonal polynomials, spatiotemporal, event-based, convolutional neural networks, object detection

✦

1 INTRODUCTION

T EMPORAL convolutional networks (TCNs) [18] have been
a staple for processing time series data from speech

enhancement [22] to action segmentation [17]. However,
in most cases, the temporal kernel is very short (usually
size of 3), making it difficult for the network to capture
long-range temporal correlations. The temporal kernels are
intentionally kept short, because keeping a long temporal
kernel with a large number of trainable kernel values usually
leads to unstable training. In addition, we require a large
amount of memory for storing the weights during inference.
One popular solution for this has been to parameterize the
temporal kernel function with a simple multilayer perceptron
(MLP), which promotes stability [28] and more compressed
parameters, but it often increases the computational load
considerably.

Here, we introduce a method of parameterization of
temporal kernels, named PLEIADES (PoLynomial Expansion
In Adaptive Distributed Event-based Systems), that can in
many cases reduce the memory and computational costs
compared to explicit convolutions. The design is fairly
modular, and can be used as a drop-in replacement for any
1D-like convolutional layers, allowing them to perform long
temporal convolutions effectively. In fact, we augment a
previously proposed (1+2)D causal spatiotemporal network
[23] by replacing its temporal kernels with this new polyno-
mial parameterization. This new network architecture serves
as the backbone for a wide range of online spatiotemporal
tasks ranging from action recognition to object detection.This
network belong to a broader class of networks named
Temporal Neural Networks (TENNs) developed by Brainchip
Inc.

• Yan Ru Pei is a Machine Learning Research Engineer at Brainchip Inc.
and Olivier Coenen is a Senior Research Scientist at Brainchip Inc.
E-mail: yanrpei@gmail.com, ocoenen@brainchip.com

Even though our network can be used for any spatiotem-
poral data (e.g. videos captured with conventional cameras),
in this work, we investigate mainly the performance of our
network on event-based data (e.g. data captured by an event
camera). Event cameras are sensors that generate outputs
events {−1,+1} responding to optical changes in the scene’s
luminance [4], and can generate sparse data on an incredibly
short time scale, usually at 1 microsecond. Event cameras can
produce very rich temporal features capturing subtle motion
patterns, and allow for flexible adjustment in the effective
FPS into our network by varying the binning window size.
This makes it suitable for us to test networks with long
temporal kernels sampled at different step sizes.

In Section 2, we discuss earlier and concurrent works that
are related to our polynomial parameterization of temporal
kernels, including the modern variants of deep state-space
models. In Section 3, we discuss how the generation and
discretization of temporal kernels are performed, and addi-
tionally using the einsum notation to perform the optimal
order of operations to reduce memory and computational
loads. In Section 4, we briefly describe the network backbone
architecture, including some architectural novelties besides
our polynomial temporal kernels. In Section 5, we run three
event-based benchmarks: 1) the IBM DVS128 hand gesture
recognition dataset, 2) the CVPR 2024 AIS event-based eye
tracking challenge, 3) and the PROPHESEE 1 megapixel
automotive detection dataset (Prophesee GEN4 Dataset).
We achieved SOTA results on all three benchmarks with
significantly fewer parameters.

The code for building the structured temporal ker-
nels, along with a pre-trained PLEIADES network for
evaluation on the DVS128 dataset is available here:
https://github.com/PeaBrane/Pleiades.

https://github.com/PeaBrane/Pleiades


2

2 RELATED WORK

2.1 Long Temporal Convolutions and Parameterization
of Kernels

When training a neural network containing convolutions
with long (temporal) kernels, it is usually not desirable to
explicitly parameterize the kernel values for each time step.
First of all, the input data may not be uniformly sampled,
meaning that the kernels need to be continuous in nature,
making explicit parameterization impossible1. In this case,
the kernel is treated as a mapping from an event timestamp
to a kernel value, where its mapping is usually achieved via a
simple MLP [25], [26], [28]. In cases where the input features
are uniformly sampled, explicit parameterization of the val-
ues for each time step becomes possible in theory. However,
certain regularization procedures need to be applied [3] in
practice, otherwise the training may become unstable due
to the large number of trainable weights. Storing all these
weights may also be unfavorable in memory-constrained
environments (for edge or mobile devices).

The seminal work proposing a memory encoding using
orthogonal Legendre polynomials in a recurrent state-space
model is the Legendre Memory Unit (LMU) [33], where
Legendre polynomials (a special case of Jacobi polynomials)
are used. The HiPPO formalism [11] then generalized this
to other orthogonal functions including Chebyshev polyno-
mials, Laguerre polynomials, and Fourier modes. Later, this
sparked a cornucopia of works interfacing with deep state
space models including S4 [12], H3 [2], and Mamba [10],
achieving impressive results on a wide range of tasks from
audio generation to language modeling. There are several
common themes among these networks that PLEIADES differ
from. First, these models typically only interface with 1D
temporal data, and usually try to flatten high dimensional
data into 1D data before processing [12], [37], with some ex-
ceptions [21]. Second, instead of explicitly performing finite-
window temporal convolutions, a running approximation of
the effects of such convolutions are performed, essentially
yielding a system with infinite impulse responses where
the effective polynomial structures are distorted [11], [31].
And in the more recent works, the polynomial structures are
tenuously used only for initialization, but then made fully
trainable. Finally, these networks mostly use an underlying
depthwise structure [14] for long convolutions, which may
limit the network capacity, albeit reducing the compute
requirement of the network.

2.2 Spatiotemporal Networks

There are several classes of neural networks that can process
spatiotemporal data (i.e. videos and event frames). For
example, a class of networks combines components from
spatial convolutional networks and recurrent networks, with
the most prominent network being ConvLSTM [29]. These
types of models interface well with streaming spatiotemporal
data, but are oftentimes difficult to train (as with recurrent
networks in general). On the other hand, we have a class of
easily trainable networks that perform (separable) spatiotem-
poral convolutions such as the R(2+1)D and P3D networks

1. One would require an uncountable-infinite number of “weights” to
explicitly parameterize a continuous function.

[27], [32], but they were originally difficult to configure for
online inference as they do not assume causality. However,
it is easy to configure the temporal convolutional layers as
causal during training, such that the network can perform
efficient online inference with streaming data via the use of
circular buffering [23] or incorporating spike-based [30] or
event-based [15] processing.

2.3 Event-based Data and Networks
An event can be succinctly represented as a tuple E =
(p, x, y, t), where p denotes the polarity, x and y are the
horizontal and vertical pixel coordinates, and t is the
time. A collection of events can then be expressed as
E = {E1, E2, ...}. To feed event-based data into conventional
neural networks, it is often necessary to bin them into
uniform grids, or tensors generally shaped (2, H,W, T ).
Many different event-binning methods have been explored
in the past. The simplest approach is to simply count the
number in each bin [19]. Other methods include replacing
each event with a fixed or trainable kernel [5], [36] before
evaluating the contribution of that kernel to a given bin.
Here, we only use the direct binning and event-volume
binning methods, yielding the 4d tensor (2, H,W, T ) to our
network [23], noting that we retain the polarity channel
unlike previous works [36].

The most popular class of event-based networks is spik-
ing neural networks, which propagate event or spike signals
with continuous timestamps throughout the network, usually
under the assumption of some fixed internal dynamics for
the neurons [6], [7]. These networks can be efficient during
inference, as typically they only need to propagate 1-bit
signals, but they are also incredibly difficult to train without
specialized techniques to efficiently simulate the neural
dynamics and ameliorate the spiking behaviors. The SLAYER
model [30] computes the neuron response using the spike-
response model (SRM), which can then be used to convolve
temporally with the input signal. This impulse-response
kernel is typically limited to a non-adaptive shape, such as
an exponential decay (leaky integrate-and-fire neuron) or an
alpha function. SLAYER then uses customized CUDA kernels
to implement the delayed responses. PLEIADES generalizes
the impulse-response kernel of SLAYER by making the kernel
a trainable convolution kernel. It is a kernel that can take
on any shape, thus providing almost any dynamics to the
neuron, not limited by a priori assumptions. The kernel is
fully adaptive to input data, network connectivity, and cost
function used to train the network.2

Other works have proposed ameliorating the spiking
behaviors with differentiable functions which can interface
easier with backpropagation (surrogate gradients) [20], so
the spiking network can be trained like a standard neural
network. Note that a network or hardware can be fully event-
based without necessarily using spike-based processing, with

2. The kernel represented in the expansion is not limited to the
temporal domain, it can also be spatial (Zernike polynomials). In
general, a spatiotemporal kernel may be composed of products of 2D
orthogonal polynomials in space and 1D orthogonal polynomials in time;
alternatively, it can directly be built from 3D orthogonal polynomials,
albeit at higher computational costs. More generally, the kernel may
also process/convolve/integrate over other dimensions, such as the
polarization of light or the spin of electrons, to interface with optical or
spintronic devices.
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a prominent example being Brainchip’s Akida hardware
[15]. Such hardware can generally support most modern
neural networks, with sparsity-aware processing where only
nonzero input features are processed at each layer. The
network we propose in this work is a standard neural
network (though configurable as an SNN), and can efficiently
leverage event-based processing given sufficiently high
sparsity3 (see Appendix B.1.1).

3 TEMPORAL CONVOLUTIONS WITH POLYNOMIALS

In this section, we discuss: 1) how the temporal kernels
are generated by the weighted sums of polynomial basis
functions; 2) how the temporal kernels are discretized to be
used in a neural network; 3) how the convolution with the
input feature tensor can be optimized with respect to the
order of operations. From here on, we will index the input
channel with c, the output channel with d, the polynomial
degree or basis with n, the spatial dimensions with x and y,
the input timestamp with t, the output timestamp with t′,
and the temporal kernel timestamp with τ .

3.1 Building temporal kernels from orthogonal polyno-
mials
Jacobi polynomials P (α,β)

n (τ) are a class of polynomials that
are orthogonal in the following sense:∫ 1

−1
P (α,β)
n (τ)P (α,β)

m (τ)(1−τ)α(1+τ)β dτ = δnmh(α,β)
n , (1)

where δn,m is the Kronecker delta that equates to 1 if n = m,
and equates to 0 if n ̸= m, hence establishing the orthogo-
nality condition. h(α,β)

n is some normalization constant that
is not important for our discussion. A continuous function
can be parameterized by taking the weighted sum of these
polynomials up to a given degree N , where the weighting
factors (or coefficients) {γ0, γ1, ..., γN} are trainable.

When this parameterization is used in an 1D convolu-
tional layer typically involving multiple input and output
channels, then naturally we require a set of coefficients for
each pairing of input and output channels. More formally, if
we index the input channels with c and the output channels
with d, then the continuous kernel connecting c to d can be
expressed as

kcd(τ) =
N∑

n=0

γcd,nP
(α,β)
n (τ). (2)

We note that training with such structured temporal ker-
nels will strictly lose us expressivity compared to explicitly
parameterized temporal kernels. However, there are several
key advantages of using structured kernels which will largely
overcompensate for the loss of expressivity. First, using
this form of implicit parameterization will allow natural
resampling of the kernels during discretization, meaning
that the network can interface with data sampled at different
rates without additional fine-tuning (see Section 3.2). Second,
having a functional basis will allow an intermediate subspace

3. This can be achieved with interfacing with sparse input data
(e.g. event-camera data), sparsity promoting activation functions (e.g.
ReLU), intermediate loss functions (e.g. L1 activation regularization),
and network quantization.

to store feature projection, which can sometimes improve
memory and computational efficiency (see Section 3.3).
Finally, since a Jacobi polynomial basis is associated with
an underlying Sturm-Louville equation, this will inject good
“physical” inductive biases for our network, to make the
training more stable and be guided to a better optimum (see
Section 5.1 for an empirical proof).

3.2 Discretization of kernels

In the current implementation of our network, which in-
terfaces with inputs that are binned in time, we need to
perform discretization of the temporal kernels accordingly.
One method is to take the integral of the temporal kernels
over the time bins of interest.

We start by defining the antiderivative of the temporal
kernels as

Kcd(τ) =

∫ τ

−1
kcd(τ

′) dτ ′ =

∫ τ

−1

N∑
n=0

γcd,nP
(α,β)
n (τ ′) dτ ′

=
N∑

n=0

γcd,n
(n+ 1)!

P
(α,β)
n+1 (τ)− const,

(3)

where the constant term does not depend on τ and can be
ignored. If we need to now evaluate the integral of kcd(τ)
in the time bin [τ0, τ0 + ∆τ ], which we can denote as the
discrete kcd[τ0], we can simply take the difference

kcd[τ0] = Kcd(τ0 +∆τ)−Kcd(τ0)

=
N∑

n=0

γcd,n
P

(α,β)
n+1 (τ0 +∆τ)− P

(α,β)
n+1 (τ0)

(n+ 1)!

=
N∑

n=0

γcd,nP
(α,β)
n [τ0],

(4)

where P is the appropriately defined discrete polynomials,
recovering the same form as Eq. 2. Note that Eq. 4 can be
considered a generalized matrix multiplication operation
where the dimension n (the polynomial basis dimension) is
contracted, discussed further in Section 3.3. See Fig. 1 for
a schematic representation of the operations of generating
temporal kernels for multiple channels.

Under this discretization scheme, it is very easy to
resample the temporal kernels (either downsampling or
upsampling), to interface with data sampled at arbitrary
rates, i.e. arbitrary bin-sizes for event-based data. This means
that the network can be trained at a given step-size ∆τ , but
adapted to perform inference at different rates (either faster
or slower), without any additional tuning. One simply has
to regenerate the discretized basis polynomials using the
equations above with the new ∆τ , and keep everything else
in the network unchanged4.

4. This is true if the scale of the input data is invariant under
resampling. For event-based data accumulated into bins, this means
the bin values have to be rescaled by a factor reciprocal to the size of
the new bin size relative to the original one. For example, if the bin
size is doubled, then the bin values need to be appropriately halved to
maintain the same scale.
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channels

coefficients

discretized values discretized values

channels=×

Fig. 1. An example of generating discrete temporal kernels for multiple channels, based on trainable coefficients and fixed basis orthogonal
polynomials. Here, we are considering (depthwise) convolution with 3 channels, 4 basis polynomials, and a kernel size of 5. The shaded areas can
be interpreted as discretized values. The coefficients can be organized as a 3× 4 matrix, and the discretized basis polynomials can be organized as
a 4× 5 matrix. The matrix multiplication of the two then yields the final discretized kernels for the channels as a 3× 5 matrix.

3.3 Optimal order of operations
Now that the kernels are discretized, to lessen the burden of
notation, we can employ the Einstein summation notation,
or einsum. to reduce the above equation to

kcdτ = γcdnPnτ , (5)

where the repeating index n is assumed to be summed over
(or contracted) on the right-hand side, corresponding to
summing over the polynomial basis. See Appendix A.1 for a
detailed description of the contraction rules. If we now wish
to convolve the temporal kernel kijτ with a spatiotemporal
input feature tensor u which gives us the output y, the
operation becomes

ydxyt′ = ucxytMntt′(P )γcdn, (6)

where M(P ) is the convolution operator matrix, a sparse
Toeplitz matrix generated from P (see Appendix A.3). If a
depthwise convolution is performed [14], then the equation
simplifies to

ycxyt = ucxytMntt′(P )γcn, (7)

as we only have parallel connections between input and
output channels (both denoted by c). Note that the temporal
kernels do not interact with the spatial indices x and y,
meaning that each temporal kernel is applied separately to
every spatial pixel.

All the einsum operations are associative and commuta-
tive5, so we have full freedom over the order of contractions.
For example, we can first generate the temporal kernels from
the orthogonal polynomials, then perform the convolutions
with the input features (the order of operations we assumed
by default). But equally valid, we can also first project the
input features onto the basis polynomials separately, then
weigh and accumulate these results using the polynomial
coefficients. This can be written as (ucxytMntt′)γcdn =
xcxynt′γcdn = ydxyt′ in einsum form, where x represents the
intermediate projections. Note that this contraction ordering
freedom is not allowed for unstructured temporal kernels, as
there is no intermediate basis n to project anything onto.

5. Matrix multiplications, or tensor contractions in general, are not
commutative. However, the einsum notation restores the commutativity
by explicitly keeping track of the contraction indices, so that the
contraction operations are invariant under commutation.

In practice, we select the contraction path based on
optimizing memory or computational usage [9], depending
on the training hardware and cost limitations. This is
possible because the memory and computational costs can
be calculated for any contraction path, given the dimensions
of the contraction indices (tensor shapes). See Appendix A.2
for how these costs can be calculated. The choice of the
optimal contraction path can be automatically selected using
the opt_einsum library6, under certain modifications of the
cost estimation rules (see Appendix A.3).

4 NETWORK ARCHITECTURE

The main network block is a spatiotemporal convolution
block, factorized as a (1+2)D convolution. In other words,
we perform a temporal convolution on each spatial pixel
followed by a spatial convolution on each temporal frame,
similar in form to the R(2+1)D convolution block [32],
or a previously proposed (1+2)D network for online eye
tracking [23]. Furthermore, each of the temporal and spatial
convolutional layers can be additionally factorized as a
depthwise-separable (DWS) layer [14], to further reduce the
computational costs. For every temporal kernel (for every
channel pairing, every layer, and every network variant), we
use α = −0.25 and β = −0.25 for the Jacobi polynomial
basis functions, with degrees up to 4.

Several other minor design choices we made for our
networks (besides polynomial kernels) include:

• We keep every operation in our network fully causal,
such that the network can be easily adapted for
online inference with minimal latency. Importantly,
we perform only causal temporal convolutions.

• After every temporal convolution, we perform a
causal Group Normalization [23] with groups = 4.
And after every spatial convolution, we perform
a Batch Normalization. This strategy of using a
mixture of static and dynamic is shown to improve
performance [8].

6. This library is well-integrated with PyTorch so can be easily called.
However, a caveat here is that the optimal contraction path in reality
also depends on software support and hardware architecture, and there
are scenarios where choosing the most compute-efficient contraction
path does not necessarily lead to speedups, especially if the operations
are memory-bound.
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Fig. 2. A representative network used for eye tracking. The backbone consists of 5 spatiotemporal blocks. full conv is short for full convolution and
denoted by darker blocks, and DWS conv is short for depthwise-separable convolution and denoted by lighter blocks. The detection head is inspired
by CenterNet, with the modification that the 3× 3 convolution is made depthwise-separable and a temporal layer is prepended to it.

• We apply a ReLU activation after every convolution
layers, and also within every DWS layer. The activa-
tion function is intentionally kept simple, for ease of
implementation on mobile or edge devices, and to
promote activation sparsity in the network.

For tasks requiring object tracking or detection (see
Sections 5.2 and 5.3), we attach a temporally smoothed
CenterNet detection head to the backbone (see Fig. 2),
consisting of a DWS temporal layer, a 3 × 3 DWS spatial
layer, and a final pointwise layer [35], with ReLU activations
in between. Since our backbone is already spatiotemporal
in nature and capable of capturing long-range temporal
correlations, we do not use any additional recurrent heads
(e.g. ConvLSTMs) or temporal-based loss functions [24].

5 EXPERIMENTS

We conduct experiments on standard computer vision tasks
with event-based datasets. For all baseline experiments,
we preprocess the event data into 4d tensors of shape
(2, H,W, T ), with the 2 polarity channels retained. Gen-
eral details of data and training pipelines are given in
Appendix B.

5.1 DVS128 Hand Gesture Recognition
The DVS128 dataset contains recordings of 10 hand gesture
classes performed by different subjects [1], recorded with
a 128 × 128 dynamic vision sensor (DVS) camera. We use
a simple backbone consisting of 5 spatiotemporal blocks.
The network architecture is almost the same as that shown
in Fig. 2 with the exception that the detection head is
replaced by a spatial global-average pooling layer followed
by a simple 2-layer MLP to produce classification logits
(technically a pointwise Conv1D layer during training). This
means that the output produces raw predictions at 10 ms
intervals, which already by themselves are surprisingly high-
quality. With additional output filtering on the network
predictions, the test accuracy can be pushed to 100% (see Ta-
ble 1). In addition, we compare the PLEIADES network with
a counterpart that uses unstructured temporal kernels, or
simply a Conv(1+2)D network [23], and find that PLEIADES
has better performance with a smaller number of parameters
(due to the polynomial compression).

Unfortunately, previous studies lacked a unified standard
for performing the evaluations on the dataset, so it is not
entirely clear the metrics being reported. In particular, some
networks perform online inference, and the others process

TABLE 1
The raw 10-class test accuracy of several networks on the DVS128

dataset. With the exception of models marked with an asterisk, no output
filtering is performed on the networks. PLEIADES is evaluated on output

predictions where all temporal layers process nonzero valid frames,
which incurs a natural warm-up latency of 0.44 seconds (see

Section 5.1). Additionally, a majority filter of window 0.15 seconds can be
applied to the raw PLEIADES predictions to reach 100% accuracy.

Model Accuracy (%) Parameters

PLEIADES + filtering* 100.00 192K
PLEIADES 99.59 192K
Conv(1+2)D 99.17 196K
ANN-Rollouts [16] 97.16 500K
TrueNorth CNN* [1] 96.59 18M
SLAYER [30] 93.64 -

entire recording segments before producing a prediction.
Here, we produce a more general accuracy vs. latency
relationship for our network variants, as to establish multiple
Pareto frontiers for comparisons. In the context of this
experiment, the latency is simply the number of event frames
(from the beginning of the recording) multiplied by the bin
size, that the network has “seen” before making a prediction.

Note that if we wish to guarantee that every tempo-
ral layer is working with nonzero valid input features,
then the network will have a natural latency of equal
to (number of temporal layers)× (temporal kernel size−1),
meaning that the baseline network would have a latency of
440 ms. However, if we relax this requirement, by assuming
implicit zero paddings for missing data (or equivalently zero
initialization of the buffers), we can then allow the network
to perform inference at much lower latencies. On the contrary,
if latency is not of primary concern, then we can also apply
output filtering to the network [1] to boost performance at the
cost of higher system latencies. See Appendix B.1 for details
on how the network can be configured to run at different
latencies.

There are several ways to “force” the network to respond
faster. The natural way is to simply use a smaller kernel size
or binning window (temporal step size). Here, we test two
model variants with a binning window of 5 ms and 10 ms,
keeping the temporal kernel size fixed at 10 (meaning that
the 5 ms variant has a shorter effective temporal window).
Another way is to randomly mask out frames starting from
the beginning of the input segment, to force the network to
“respond” only to the more recent input frames, such that the
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Fig. 3. (Left) The accuracy vs. latency curves for different PLEIADES variants with a kernel size of 10 but different step sizes on the DVS128 dataset.
A masking augmentation is optionally used to randomly mask out the starting frames of dataset segments during training, in order to stimulate faster
responses in the network. (Right) The accuracy vs. latency curves for different PLEIADES variants with an effective temporal window of 100 ms for
each temporal layer, but having different step sizes. The benchmark network is trained with a kernel size of 10 and a step size of 10 ms, and the other
variants are resampled without additional fine-tuning. A network variant trained without any structured temporal kernel is also displayed as a baseline
reference.

effective response window of the network is shorter7. See the
left plot of Fig. 3 of the effects of these two approaches for
stimulating faster network response times. See Appendix B.1
for details on the random masking augmentation.

The benchmark network is trained with step-size ∆τ
of 10 ms, which is also the event data bin-size. Here, we
change the step-sizes to 5 ms and 20 ms (upsampling and
downsampling) without fine-tuning the network, and simply
re-discretize the basis polynomials under the new step-
sizes (see Section 3.2) and re-bin the event data. To keep
the effective temporal window (thus the network behavior)
the same, the 5 ms step-size network would have a kernel
size of 20, and the 20 ms step-size network would have a
kernel size of 5. We see from the right plot of Fig. 3 that
the accuracy vs. latency curve does not vary much under
the time-step resampling. In the same plot, we also show
the performance for the Conv(1+2)D baseline network with
unstructured kernels, denoted as “free kernels”, to compare
the PLEIADES variants against.

5.2 AIS2024 Event-based Eye Tracking
We use the same backbone as the network for the DVS128
hand gesture recognition, but with a temporal step-size of 5
ms. We simply replace the 2-layer MLP classification head
with the CenterNet detection head and loss adapted from
[23]. Note that we omit predictions of the bounding box sizes,
and only predict center points of pupils for this challenge.
See Fig. 2 for a drawing of the network architecture.

5.3 Prophesee GEN4 Roadscene Object Detection
The Prophesee GEN4 Dataset is a road-scene object detection
dataset collected with a megapixel event camera [24]. The

7. Note this does not decrease the theoretical latency of the network,
but rather improves the prediction accuracy of the network when fed
with fewer input frames (hence having less “effective” latency for a
given accuracy). However, it is likely this augmentation will degrade
accuracy when more frames are fed to the newtork, when compared to
a counterpart not trained with this masking augmentation.

TABLE 2
The 10-pixel, 5-pixel, and 3-pixel tolerances for the CVPR 2024 AIS eye

tracking challenge. The performances of other models are extracted
from [34].

Model p10 p5 p3 Parameters

PLEIADES + CenterNet 99.58 97.95 94.94 277K
MambaPupil 99.42 97.05 90.73 -
CETM 99.26 96.31 83.83 7.1M
Conv(1+2)D 99.00 97.97 94.58 1.1M
ERVT 98,21 94.94 87.26 150K
PEPNet 97.95 80.67 49.08 640K

dataset has around 14 hours of recording with both daytime
and night time, and both rural and urban driving scenarios.
It contains 7 classes, but we evaluate the mAP only on
2 classes: cars and pedestrians, to be consistent with the
original evaluation pipeline [24]. See Appendix B.2 for details
on the model architecture used and the training pipeline. The
backbone network is an hourglass network built from a stack
of spatiotemporal blocks with a temporal step size of 10
ms. The detection head is again the CenterNet detection
head as described in Section 4. We do not use any non-max
suppression on the bounding box outputs, as suggested in
the original CenterNet pipeline being robust against spurious
bounding box predictions, which is further augmented
by the implicit temporal consistency of our network. See
Appendix B.2 for details of the network architecture.

TABLE 3
The performance of PLEIADES with a CenterNet detector compared to

the models introduced in the original benchmark paper.

Model mAP Parameters

PLEIADES + CenterNet 0.556 0.576 M
RED 0.43 24.1 M
Gray-RetinaNet 0.43 32.8 M
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6 LIMITATIONS

Since the temporal layers of our network work like a finite-
window filter with circular buffers, a practical limitation may
be the high memory cost to explicitly buffer the moving
window of recent input features, which is worsened if
the temporal kernel size or spatial dimensions are large.
However, by virtue of the polynomial structures of our
temporal kernels, we can derive estimates of an online
running projection of the past input features onto the
fixed polynomial basis functions [11], [31], an idea briefly
discussed in Section 3.3 also.

These compressed coefficients are analogous to internal
states in recurrent networks, which we can then perform a
pointwise operation with our pre-trained kernel coefficients
to estimate the would-be output of the original finite-window
convolution8. This is similar in spirit to deep state-space
modeling [12], [13], and there may be a way to potentially
integrate such developments into our network architecture.
In other words, we can potentially convert our convolutional
network into a recurrent network for even better online
inference efficiency.

7 CONCLUSION

We introduced PLEIADES, a spatiotemporal network with
temporal kernels built from orthogonal polynomials. The
network achieved state-of-the-art results on all the event-
based benchmarks we tested, and its performance is shown to
be stable under temporal resampling without additional fine-
tuning. Currently, the network is configured as a standard
neural network, which by itself is already ultra-light in
memory and computational costs. To truly leverage the
full advantage of event-based processing, we can consider
using intermediate loss functions to promote activation
sparsity [23]. Another direction is to adapt/convert this
architecture into a spiking system by leveraging the structure
of the polynomial kernels to provide richer dynamics to
neurons beyond the typical and arbitrary leaky integrate-
and-fire neurons, without adding computational complexity
in inference or training. It offers the possibility for such
spiking systems to be trained as a convolutional network
without having to simulate any differential equation of the
internal neural dynamics.
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APPENDIX A
OPTIMAL CONTRACTION ORDER MEMORY AND COM-
PUTE

A.1 The Rules of Einsum
The rules of contracting an einsum expression can be
summarized as follows:

• At every contraction step, any two operands can
be contracted together, as the einsum operation is
associative and commutative.

• For any indices appearing in the two contracted
operands but not the output and other operands,
these indices can be summed away for the intermedi-
ate contraction results.

Any ordering of contractions (or a contraction path) follow-
ing these rules are guaranteed to yield equivalent results.

A simple example is multiplying three matrices together,
or Dil = AijBjkCkl. In the first stage, we can first choose
to contract Aij and Bjk, which would yield an intermediate
result of Mik, where the index j is contracted away as it does
not appear in the output Dil. In the second stage, we then
contract Mik and Ckl to arrive at the output Dil.

We can also choose to do the contractions in any other
order, and the result will remain the same. As a more
extreme example, we can even perform an outer product
first Mijkl = AijCkl, noting that we cannot contract away
the j and k indices yet as they appear in Bjk still. The
contractions of j and k then need to be left to the second
stage contraction, Dil = MijklBjk. Intuitively, we feel that
this is a very suboptimal way of doing multiplication of
three matrices, and we can formalize why this is by looking
at the memory and compute complexities of performing a
contraction.

A.2 Memory and Compute Requirements of a Contrac-
tion
If we assume that we are not performing any kernel fusion,
and explicitly materializing and saving all intermediate
tensors for backpropagation, then the extra memory and
compute incurred by each contraction step is as follows:

• The memory needed to store the intermediate result
is simply the size of the tensor, or equivalently the
product of the sizes of its indices.

• The compute needed to evaluate the intermediate
result is the product of the sizes of all indices involved
in the contraction (repeated indices are counted only
once).

Again, we can use the Dil = AijBjkCkl, where we assume
that the index sizes to be9 i, j, k, and l. Doing the first
stage contraction Mik = AijBjk will require ik units of extra
memory and ijk units of compute, and doing the second
stage contraction Dil = MikCkl will require no extra memory
besides that for storing the output and ikl units of compute.
This gives us a total extra memory requirement of ik units
and a total compute requirement of ijk + ikl units.

9. From here on, we will consistently use this abuse of notation
where the same letter will be used to denote both the index and the
corresponding dimensional size of that index.
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On the other hand, if we perform the outer product
Mijkl = AijCkl first, this will require ijkl units of extra
memory and ijkl units of compute. The second stage con-
traction Dil = MijklCkl will require ijkl units of compute.
Therfore, the total memory requirement of this contraction
path is ijkl units and the total compute requirement is 2ijkl
units, both being significantly worse than the first contraction
path, regardless of the sizes of the tensors.

A more subtle example (the only remaining contraction
path) is contracting the operands from back to front, which
we can verify requires a total memory of jl units and a total
compute of jkl + ijl units. So this is only more memory
optimal than the first contraction path if jl < ik, and more
compute optimal if jkl + ijl < ijk + ikl, which may not be
immediately obvious from inspection as the optimality now
depends on the sizes of the tensors.

Note that it is assumed that every tensor involved in the
einsum expression requires gradient from backpropagation,
in the context of neural network training. This is why we
identify the size of each intermediate result as “additional
memory”, as they need to be stored as tensors used for
gradient computation. In addition, it is not difficult to
see that for einsum operations, the computational costs
required for backpropagation is exactly double that of the
forward computation. Therefore, we only need to consider
the forward pass of the einsum expression, which is what
we have been doing.

Importantly, note that this argument for memory and
computational costs of gradient computations is only true
under the assumption of reverse-mode automatic differentia-
tion (backpropagation), which is what is used in almost all
modern machine learning frameworks. In other words, we do
not consider more general forms of automatic differentiation
such as the forward-mode variant. Another important note is
that in practice if the operations are memory-bound, then the
computational cost estimates may not be useful for training
time estimation.

A.3 Convolution with a Parameterized Temporal Kernel
Recall in the main text that the equation for performing a full
convolution with a polynomially parameterized temporal
kernel is

ydxyt = ucxytγdncMnt′t(P ), (8)

where the convolution operator tensor M(P ) based on the
discretized polynomial basis functions P is given by the fol-
lowing Toeplitz matrix for each degree or basis n (assuming
that kernel size is 5 with the discretized timestamps being
{τ0, τ1, τ2, τ3, τ4}):

M(P )n =

P [τ0] 0 0 0 0 ... 0
P [τ1] P [τ0] 0 0 0 ... 0
P [τ2] P [τ1] P [τ0] 0 0 ... 0
P [τ3] P [τ2] P [τ1] P [τ0] 0 ... 0
P [τ4] P [τ3] P [τ2] P [τ1] P [τ0] ... 0

...
0 ... P [τ4] P [τ3] P [τ2] P [τ1] P [τ0]


,

(9)

where for a valid-type convolution we omit the first four
rows of the matrix.

Note that we need to make two modifications to the
memory and compute calculation rules in Section A.2 to
adapt for the sparse and Toeplitz structure of the convolution
matrix M . First is that the memory required for storing any
tensor containing both t, t′ is guaranteed to be some form of
convolution kernel, so it should only contribute a memory
factor of Nτ (the kernel size) instead of NtNt′ . Second is
that any contraction of two tensors with one containing t
and the other containing t, t′ is guaranteed to be a temporal
convolution, so should similarly contribute a compute factor
of Nt′Nτ for valid-type convolutions and NtNτ for same-
type convolutions. For our implementation, we monkey
patch these modifications into the opt_einsum package
used to provide memory and FLOP estimations of einsum
expressinos.

TABLE 4
The memory and compute requirements for each possible contraction

path, where we are using a slight abuse of notation by allowing the index
to represent the dimensional size of that index in the “extra memory” and
“total compute” columns. The initial equation cxyt,dnc,nt’t is always
assumed. We assume here that Nt = Nt′ for simplicity (equivalent to

performing same-type convolutions).

Contraction Path Extra Memory Total Compute
-> dnxyt,nt’t -> dxyt’ dnxyt nxyt(dc+ dτ)
-> ncxyt’,dnc -> dxyt’ ncxyt nxyt(cτ + dc)
-> cxyt,dct’t -> dxyt’ cxyt dncτ + dcxytτ

Following the prescription given above for calculating
the memory and compute requirements for performing
contractions, we summarize the requirements of each con-
traction path for the temporal convolution in Table 4. We
only consider the case for full convolutions, but the case for
depthwise convolutions is analagous.

The first contraction path first contracts the input with
the polynomial coefficients, then convolves the intermediate
result with the basis functions. The second contraction
path first convolves the input with the basis functions,
then contracts the intermediate result with the polynomial
coefficients. The third contraction path first generates the
temporal kernels from the polynoimal coefficients and basis
functions, then convolves them with the input features. In
most cases, we see that the last contraction path is most
memory efficient in typical cases, or when c < dn. However,
the optimality for computational efficiency is more subtle
and requires comparison of dn(c+ τ), nc(τ + d), and dcτ .

APPENDIX B
DETAILS OF EXPERIMENTS

To convert events into frames, we choose the binning window
to be 10 ms, unless otherwise specified. This time step is kept
fixed throughout our network, as we do not perform any
temporal resampling through the network. For the DVS128
and AIS2024 eye tracking experiments, we perform simple
direct binning along with random affine augmentations (with
rotation angles up to 10 degrees, translation factors up to 0.1,
and spatial scaling factors up to 1.1). For the Prophesee
roadscene detection, we perform event-volume binning
(analogous to bilinear interpolation), with augmentations
consisting of horizontal flips at 0.5 probability and random
scaling with factors from 0.9 to 1.1.
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Recall that our network performs valid-type causal
temporal convolutions which reduces the number of frames
by (kernel size−1) per temporal convolution. To avoid intro-
ducing any implicit temporal paddings to our network, we
prepend extra frames (relative to the labels) to the beginning
of the input segment. The total number of extra frames is
then (number of tepmoral layers)× (kernel size − 1).

For all training runs, we use the AdamW optimizer with
a learning rate of 0.001 and weight decay of 0.001 (with
PyTorch default keywords), along with the cosine decay
learning rate scheduler (updated every step) with a warmup
period of around 0.01 of the total training steps. The runs are
performed with automatic mixed precision (float 16) with
the model torch.compile’d. All training jobs are done on
a single NVIDIA A30 GPU.

B.1 DVS Hand Gesture Recognition
Following the standard benchmarking procedure on this
dataset, we only train and evaluate on the first 1.5 seconds of
each trial, and filter out the “other” class where the subject
performs random gestures not falling into the 10 predefined
classes.

As mentioned, the network requires at least
(number of tepmoral layers) × (kernel size − 1) + 1
frames of inputs to guarantee that every temporal layer
is processing “valid” nonzero input features. To generate
output predictions with less than this number of frames, we
can prepend zeros to layer inputs where needed to match
the kernel size. This simulates the behavior of initializing
the buffers of the temporal layers with zeros during online
inference.

If the number of input frames is greater than
(number of temporal layers)× (kernel size−1)+1, then the
network will produce more than one output predictions. If
the latency budget allows, we can apply a majority filter to
the classification predictions of the network, such that there
is more confidence in the predictions.

To force the network to respond faster, we apply a custom
random temporal masking augmentation sample-wise with
1/2 probability. The random masking operation works by
selecting a frame uniformly random from the first frame to
the middle frame of the segment, then the selected frame and
every frame preceding it is completely set to zero. This means
that the network will be artificially biased to respond to more
recent input features during inference, thereby effectively
decreasing its response latency.

B.1.1 Input Sparsity
We perform 4-bit quantization (with quantization aware
training) on the gesture recognition network, and find that
the network can achieve very high sparsity even without
applying any regularization loss, given that it interfaces
with event-based data and uses ReLU activations (which is
sparsity promoting).

B.2 Prophesee GEN4 Roadscene Object Detection
Following a recipe similar to the original paper, we remove
bounding boxes that are less than 60 pixels in the diago-
nal. In addition, we perform event-volume binning which
simultaneously performs spatial resizing from (720, 1280)

TABLE 5
Input sparsity for each layer of the gesture recognition network backbone

under 4-bit quantization.

Layer Input Sparsity

Conv(1+2)D 0.99
Conv(1+2)D 0.94
Conv(1+2)D 0.94
Conv(1+2)D 0.79
Conv(1+2)D 0.68

to (160, 320) and temporal binning of 10 ms. For data
augmentations, we perform horizontal flips at 0.5 probability
and random scaling with factors from 0.9 to 1.1.

The CenterNet detection head produces feature frames
where each frame is spatially shaped (40, 80). Each pixel con-
tains 7 + 2 + 2 outputs containing 7 class logits (center point
heatmaps), the bounding box height and width scales, and
the bounding box center point xc and yc offsets. We perform
evaluations directly on these raw predictions, without any
output filtering (e.g. no non-max suppression). The network
is trained on the full 7 road-scene classes of the dataset, and
the mAP is evaluated on the cars and pedestrians classes, at
confidence thresholds from 0.05 to 0.95 in steps of 0.05 and
averaged using trapezoid integration.

See Table. 6 for details on the model architecture, which
resembels an hourglass structure. Unless otherwise indicated,
the temporal kernel size is assumed to be 10, causal and valid-
type. The spatial kernel size is assumed to be 3× 3, where
the spatial stride can be inferred from the output shape
of the layer. DWS denotes both the temporal and spatial
layers in the Conv(1+2)D block as depthwise-separable. The
BottleNeck block is similar (but not identical) to the IRB block
in MobileNetV2; it is a residual block with the residual path
containing three Conv2D layers with ReLU activations in
between: a depthwise 3× 3 Conv2D followed by a pointwise
Conv2D quadrupling the channels followed by a pointwise
Conv2D quartering the channels.

Before each decoder layer, the input feature is first upsam-
pled spatially by a factor of 2× 2. It is then summed with an
intermediate output feature from an encoder layer that has
the same spatial shape. To match the temporal shapes, the
beginning frames are truncated if necessary. The remaining
frames are projected with a pointwise convolutional layer (a
long-range skip connection).
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TABLE 6
The PLEIADES + CenterNet architecture used for the Prophesee

dataset.

Layer Output Shape Channels

Input (2, T, 160, 320)

Encoder
Conv(1+2)D (32, T − 9, 80, 160) 2 → 16 → 32
BottleNeck 2D (32, T − 9, 80, 160) 32 → 32 → 128 → 32
DWS Conv(1+2)D (64, T − 18, 40, 80) 32 → 48 → 64
BottleNeck 2D (64, T − 18, 40, 80) 64 → 64 → 256 → 64
DWS Conv(1+2)D (96, T − 27, 20, 40) 64 → 80 → 96
DWS Conv2D (128, T − 27, 10, 20) 96 → 128
DWS Conv2D (256, T − 27, 5, 10) 128 → 256

Decoder
Upsample (256, T − 27, 10, 20)
DWS Conv2D (256, T − 27, 10, 20) 256 → 256
Upsample (256, T − 27, 20, 40)
DWS Conv2D (256, T − 27, 20, 40) 256 → 256
Upsample (256, T − 27, 40, 80)
DWS Conv2D (256, T − 27, 40, 80) 256 → 256

CenterNet Head
DWS Conv(1+2)D (128, T − 27, 40, 80) 256 → 256 → 128
pointwise Conv (11, T − 27, 40, 80) 128 → 11
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