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Abstract -- The first end-to-end RF-to-light-Spike
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neuromorphic pipeline utilizes RFoF, a developmental-EV Sensor,
novel-SNNs, and 3U-VPX-Hardware. This architecture eliminates
ADCs, FFTs, and modulators, enabling real-time RF
classification. The system is faster, lower-SWaP-C, more robust
for at-the-edge use cases, especially in situations where traditional
systems struggle with high latency and power demands.

Keywords— RF, Light, Spike, SNN, SWaP, Edge Computing,
Machine Learning, Artificial Intelligence, Unconventional
Computing

1. INTRODUCTION

This work introduces a groundbreaking neuromorphic
sensing and RF classification pipeline that advances beyond
traditional digitized processing by transforming RF signals
directly into light and then into event-based spikes for
classification. Conventional approaches rely heavily on analog-
to-digital conversion, FFT processing, and machine learning
models trained on dense RF data. However, such systems are
often SWaP-constrained and experience latency bottlenecks.
Our work proposes an alternative: a spike-based RF
classification pipeline that completely circumvents these
limitations. By employing a direct RF- over-Fiber (RFoF) link
to transmit wideband RF waveforms as intensity-modulated
light, the system eliminates the need for electro-optic
modulators (EOMs), analog-to-digital converters (ADCs), or
spatial optical projection. These optical signals are captured by
the STUN-1 neuromorphic event-based camera from Tempo
Sense, which outputs sparse spike streams corresponding to the
RF-induced light fluctuations.

The resulting spikes are processed using Parallax Advanced
Research’s Spiking Neural Network (SNN) algorithm package,
which is implemented on Bascom Hunter Technologies” SNAP
module, containing five spiking neuromorphic processors
within a 3U VPX form factor. This architecture enables real-
time, ultra-low-power RF classification in edge environments
with significant SWaP constraints. Our novel use of direct RF-

to-light conversion for signal -classification is, to our
knowledge, the first demonstration of an integrated photonic-
neuromorphic RF  pipeline  without any  digital
preprocessing. This biologically inspired system opens
new possibilities for RF missions by leveraging event-
driven computing, optical transport, and spike-native
classification at the edgel>3431.

A. Background

Recent advances in neuromorphic computing and event-
based vision systems have created new possibilities for real-
time, power-efficient RF signal classification. Traditional
approaches rely heavily on analog-to-digital conversion, FFT
processing, and machine learning models trained on dense RF
data. However, these systems are often constrained by size,
weight, and power (SWaP) and experience latency bottlenecks.
Our work proposes an alternative: a spike-based RF
classification pipeline that entirely bypasses these limitations.
Unlike prior art, our system routes RF directly to light—via RF-
over-Fiber—then into spikes using a neuromorphic camera. This
photonic-neuromorphic bridge allows us to skip digitization,
enabling sparse signal processing and event-native RF
classification. The innovation of transforming RF signals into
optical intensity patterns for direct spike conversion is novel and
allows near-instantaneous perception of RF activity. It also
offers dramatic reductions in latency and system power
compared to conventional electronic front-ends>¢7-8:%:101

II.  RELATED WORKS

While traditional RF classification pipelines depend on FFT-
based digital signal processing or deep learning applied to
digitized RF samples, recent advances in neuromorphic sensing
and photonic interfaces provide alternative, sparse, and low-
power modalities for RF perception. Work by Davies et al. on
Intel Loihi 2, Lagorce et al., and Harbour et al. on event-based
RF sensing demonstrates the viability of spiking approaches.
Our work introduces an electro-optic modulator-free pipeline
that converts RF-over-Fiber intensity modulations directly into

PA AFLCMC-2025-0136

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on December 01,2025 at 06:29:33 UTC from IEEE Xplore. Restrictions apply.



event-based data, subsequently classifying them using an
Akida-based SNN optimized for 3U VPX deployment..

III. METHODS

A. System Overview

The proposed pipeline consists of five key stages: (1) RF signal
input, (2) RF-over-Fiber signal conversion, (3) event-based
optical detection using the STUN-1 neuromorphic camera, (4)
spike-based neural processing using a Spiking Neural Network
(SNN), and (5) final classification into RF signal types on
Neuromorphic HW. Figure 1.
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Fig. 1. RF to Light to Spike to Classification

B. RF-to-Optical Interface

Via RFoF RF waveforms are first converted to the optical
domain using a Programmable 2.5GHz RF over Fiber (RFoF)
link from RFOptic. For a single-channel, proof-of-concept or
limited-spectrum demo, one RFoF link is entirely sufficient.
The RF signal modulates the intensity of a laser diode, which
transmits the signal over fiber without requiring electro-optic
modulation. This offers a compact and power-efficient analog
front-end.

C. Tempo Sense STUN-1 Neuromorphic Event Camera

The STUN-1, developed by Tempo-Sense, is a neuromorphic
event-based camera that can detect high-frequency fluctuations
in light intensity caused by the RF-modulated optical signal. It
generates spikes asynchronously whenever a change in
brightness occurs, creating a sparse, high-temporal-resolution
representation that is ideal for SNN processing.

D. Parallax Advanced Research’s Spiking Neural Network
(SNN) algorithms package
Implements a modular, real-time, low-power spike-based
classification architecture explicitly designed for RF signal
recognition tasks. Here's how it works, broken down by
architecture and functional flow:
Spike-Encoded Input Interface

e The SNN package receives spike trains (asynchronous

events over time) instead of continuous-valued inputs.

e These spikes may originate from a neuromorphic
sensor like STUN-1 or be synthetically encoded from
RF data.

e Input encoding supports rate coding, temporal coding,
or latency coding, with preference toward latency-
efficient temporal encoding to minimize energy and
inference time.

Neural Architecture: Feedforward + Convolutional Spiking
Layers

e  The architecture includes:

o Convolutional spiking layers for spatial feature
extraction.

o Leaky Integrate-and-Fire (LIF) or Resonate-and-
Fire (RF) neurons, depending on the domain (e.g.,
RF vs. IR).

o Pooling and sparsity filters to downsample and
maintain spike sparsity.

e Each spiking neuron updates its membrane potential
with incoming spikes, fires when a threshold is
reached, then resets.

Learning Algorithm
e Training is done using surrogate gradient descent,
since spikes are non-differentiable.
e The SNN can be pre-trained offline with surrogate
gradients or fine-tuned online using STDP (Spike-
Timing Dependent Plasticity) for domain adaptation.
o Key features:
o Temporal gradient tracking
o Sparse weight updates
o Integration with standard backends
Example Use Cases
e LPIradar waveform classification
e RF detection
e Event-based EO/IR classification
e  Multimodal sensor fusion (RF + visual)

E. Bascom Hunter Technologies’ SNAP module

A SOSA-aligned 3U VPX card designed for high-performance,
low-SWaP neuromorphic processing across multiple spiking
neuromorphic processors to enable multi-mission, multi-modal
ML at the edge

Key Features:
e A minimum of (5) independent spiking neuromorphic
processing pipelines
e RFSoC FPGA for
processing and I/O tasks
e 3.8 TOPS/W performance with as low as 1.7mJ per
classification
e Enables:
o Parallel ensemble classification (e.g., for LPI
radar, RF, comms)
o Agentic mission-enablement (i.e., multi-agent
approach to singular tasks)
o  Multi-sensor fusion (e.g., RF + EO).

advanced real-time signal
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o Load balancing across SNN tasks (e.g., signal
detection + tracking + classification).

Integration Use Case: Our RF Pipeline
RF — RFoF — STUN-1 — SNAP (RFSoC + Spiking
Compute)

IV. RESULTS AND DISCUSSION

A. Signal Processing and or Classification Architecture
Comparison

Table 1 Processing for Fast, Low-Power, High-Accuracy Edge
Inference[“’ 7,8.,9,10,11,12,13,14,15,16,17]

Generalization | Excellent — | Moderate — | Low — often
to Sparse | CNN  guides | may overfits
Signals SNN  toward | struggle dense areas

sparse but | with weak

informative features

features
Metric Parallax Standard Traditional

SNNs SNN CNN
TRL /| TRL 4-6 | TRL 3-5 TRL 9 (in
Deployment | (demos in vision;  not
Readiness testing) optimized for
Signals)
ML TRL Levels Above

Metric Parallax SNN | Standard Traditional
SNN CNN
Architecture Hybrid Fully SNN | CNN-only
(e.g., LIF, | (e.g.,
IF  models, | ResNet)
SLAYER)
Input Format Direct Signal | STFT or | FFT,
or Spikes Direct Spectrogram
Spikes
Modeling Continuous Native Frame-
data streams; | temporal based; lacks
captures processing native
spatial via spikes temporal
patterns; time
handles modeling
temporal
dynamics;
spikes
Test Accuracy 93-99% 72-92% 73-93%
Inference Sub- ~0.1-1 ms | 10-20 ms on
Latency microsecond (hardware- (von
(on dependent) Neumann
neuromorphic HW)
hardware)
Energy Best-in-class Very good | Poor — high
Efficiency (sparse spikes | (low- power | power, dense
+ efficient | SNNs) operations
CNN filters)
Hardware Loihi 2, Akida | Loihi2, CPU/GPU
Compatibility | 1500, SNAP | Akida (von
card (3U 1000/1500, | Neumann
VPX), SpiNNaker, HW)
RC/LSM, CPU/GPU
Memristors,
CPU/GPU,
(von Neumann
HW)
Power (per | <50 mW (on 100-300 2-5W
inference) Akida AKD mW
Series
/ Loihi 2)
Adversarial High (sparsity | High Low
Robustness + temporal (vulnerable
fusion resists to PGD,
attacks) FGSM, etc.)

B. Key Takeaways
Parallax SNNs (Hybrids):
e  Top-tier accuracy in RF signal tasks (93-99%) with
sub-us latency
e Power-efficient (<50 mW) and SWaP-optimized for
EW edge deployments
e Inference Latency in ~sub microsecond range
Standard SNNs:
e  Strong temporal modeling; accuracy is limited without
spatial pre-processing
e  Require careful tuning and training; inference latency
is low, but accuracy may trail
e Still a good fit for ultra-low-power, timing-critical
edge systems

e Perform well in raw classification, but are power-
hungry and frame-locked

e Inadequate for sparse, real-time RF signals —
vulnerable to adversarial input

e Not suitable for on-platform
deployment needs

neuromorphic

Preliminary testing using derived classifiers showed latency
reductions of >90% compared to conventional digital pipelines,
with <5W average total system power draw during inference
classification. Technology readiness level (TRL) is estimated at
TRL 4-5, with component validation in a laboratory
environment and plans for limited-range field testing.

V. CONCLUSION

A comprehensive, modulator-free neuromorphic sensing
pipeline capable of classifying RF signals in real time through
photonic-to-spike transformation was explored. By integrating
the RFOptic RFoF front-end, the Tempo-Sense STUN-1 event
camera, Parallax’s SNNs, and Bascom Hunter's HW, this
architecture provides a new class of RF perception with
unmatched SWaP efficiency and mission readiness. The
innovative photonic-neuromorphic interface from RF to Light
to Spikes signifies a fundamental shift from clock-bound,
digitized RF  processing to biologically inspired,
unconventional computing, event-native classification.
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